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Quenched random graphs 
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Received 3 June 1994 

Abstract. Spin models on quenched random gnphs are related to many important optimization 
problems. We give a new derivation of their mean-field equations that elucidates lhe role of lhe 
natural order panmeler in lhese models. 

Spin models on quenched random graphs have been studied extensively in recent years 
[ 1-51 for a couple of reasons. First, a large class of difficult (and interesting in practice) 
optimization problems such as graph partitioning and graph colouring [6] can be formulated 
as a search for the ground state of such models. Their zero-temperature limit could thus 
yield valuable information on average properties of the optimal solutions. Second, for 
finite connectivity, such models are closer to realistic systems than their infinite-range 
counterparts, yet mean-field theory is expected to stay exact. They thus provide a simpler 
setting in which to try to test whether the ultrametric structure and other properties of 
Parisi’s solution of the spin-glass phase [7] survive for finite-range interactions. 

In this paper, we would like to give a new derivation Ff the mean-field equations [4.5] 
for such models. It is based on some simple arguments, well known from the study of matrix 
models of 2D gravity [8,9] and of the large-order behaviour of perturbative series [IO], and 
adapted here in the context of disordered systems. Besides being simple and exact, this 
novel derivation elucidates the role of the natural order parameter in these models [4,5]. 
Furthermore, it can be adapted readily to a variety of different situations. We will not 
address here the difficult problem of solving these equations in the spin-glass phase. We 
will, however, comment briefly on the phase diagram in the case of pure ferromagnetic or 
antiferromagnetic couplings, as well as on the interpretation of the underlying graphs as 
infinitegenus triangulations. 

Consider first the ensemble of all trivalent (@3) graphs made out of 2n vertices. If one 
ignores accidental-symmetry factors, the number of such graphs is given by the integral 
expression 

Indeed, the $-integral can be expressed as a sum over all topologically-distinct @3 graphs 
weighted with h# vemicu multiplied by an inverse symmetry factor. The contour A-integral 
then picks out only the contribution of graphs with precisely 2n vertices. In the large-n l i i c  
we can evaluate this integral at the dominant non-trivial saddle points for both variables 
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4 and A. After a rescaling of variables (4 + @/A) and some straightforward Gaussian 
inkgrations, the result of the calculation reads 

(2) 

Here S = $ - $ IS the rescaled ‘action’ of the theory, s its value at the dominant non-trivial 
saddle point 6 which solves the ‘field equation’ 

N, = (n/e)”,kn(-2nndetS ̂ N ) -112 (1 +O(l/n)).  

2 3 .  

as 
a4 
- = o  (3) 

and det 3’ is simply the second derivative of S at the saddle point. Equation (2) is a standard 
result for the large-order behaviour of perturbative expansions [ 101 and will stay valid in 
the more complicated cases studied below. In the case at hand, using 4 = 2, s = 5 and 
-3’ = 1, one recovers the correct counting of large undecorated 43 graphs, whose precise 
number N, is 

(6n - l)!! 2” 

& =  (i) (2n)! 

Let us consider now an king model with spins ui = f l  lying on the 2n vertices of a 
43 graph Gn. The partition function is 

where the sums in the Boltzmann weight run over all edges and vertices, respectively, of 
the graph Gn, J is the spin-spin coupling and h is a magnetic field. The average of the 
partition function over all graphs can be expressed as an integral [SI over a ‘field‘ defined 
on the discrete space (+, -) 

where 

and the 2 x 2 ‘propagator’ matrix has entries 

A,,< = efor. (7) 

Indeed, the weak-A expansion of the cp0 integra@) is given as before by the sum over rp3 

Feynman diagrams, while the A-integration forces the number of vertices to be 2n. For any 
given diagram, the vertices are now, however, labelled by a ‘position in real space’ ut = rt. 
Furthermore, there is a weight e*‘, for each vertex and a propagator for each edge. 
Summing over all ‘positions’ of vertices thus yields the partition function of the king model 
on the corresponding graph. This justifies equation (5). Note that the integral is, strictly 
speaking, only defined through its asymptotic expansion. 



Quenched random graphs 6123 

In the thermodynamic limit of large graphs (n + CO), we can again calculate the above 
integral by the saddle-point technique. We limit ourselves, for simplicity, to the case of 
vanishing magnetic field. The action (6) has three non-zero saddle points, which after the 
usual rescaling read 

= I 

and 

1 3 - g  
-n log - - - log - 

-nlog-+-lognflog 3 J 5  32 4 1 

-n log 

i f g < 3  

i f g  = 3 

if g z 3. 

2&& 
(g+1)3 2 g + i  

( r (:> - (;)"'/fi) 
gk -2 )&  

(g-1)3(g+1) 2 g - i  

Here, g e'', so that g E [l,  CO) corresponds to ferromagnetic couplings J t 0, while 
g E [0, 11 corresponds to antiferromagnetic couplings J < 0. The (degenerate) saddle points 
(9) dominate in the low-temperature ferromagnetic region g > 3 but become complex below 
g = 3 where the saddle point (8) takes over. This can be continued analytically down to 
g = 0, i.e. to the zero-temperature antiferromagnet. The transition at g = 3 corresponds, 
in fact, to the onset of ferromagnetic order. This can be seen from the expression for the 
average (annealed) magnetization 

which follows by straightforward manipulations. For completeness, we also give the result 
for the average partition function, valid up to terms of order O(l/n) 

log = -n log $.? - f log(- det(A9")) 
h=O 

Note that the logarithmic corrections at the critical point are due to the appearance of a zero 
mode, so that in the calculation of the integral, we must keep terms higher than quadratic 
in the action. These logarithmic corrections are a manifestation of the long-range order. 
Note also that in the ferromagnetic region, we took into account only one of the two saddle 
points, corresponding to a pure thermodynamic state. 

Up to now, we have treated the random graphs as annealed disorder, meaning that they 
are allowed to participate in  the dynamics on an equal footing with the king spins. We can 
quench them by employing the replica trick 

- - Zk - 1 
l0gZ = rim - 

k+O k ' 
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To this effect, we introduce a real field with argument on the hypercube in k dimensions 
$ ( [ U ) )  = $ ( U [ ,  . . . , d). Each vertex of a Feynman diagram will now be labelled by the 
values of k distinct spins, one for each replicat. Arguing as before, we can express the kth 
moment of the king partition function in zero magnetic field as follows 

with 

Here, &, stands for a sum over all possible values of the k spins U' and the 2k x 2' 
propagator matrix has entries corresponding to the Boltzmann weight of k non-interacting 
replicas on an edge A({u), { r ] )  = exp ( J  E, dura).  More generally, we may allow a 
propagator 

which amounts to choosing uncorrelated couplings on each edge with some (arbiwary) 
distribution p ( J ) .  We may also trade the interaction for a more general monomial 

so as to obtain graphs with fixed connectivity equal to M. Extremizing the (rescaled) 
action finally yields the saddle-point equations 

The calculation of the partition-function integer moments is thus reduced in the 
thermodynamic limit to a finite algebraic problem. 

In order to quench the random graphs, we, of course, still have to continue, analytically, 
to values of k near zero. To do this one must make an ansatz on the precise pattern 
of replica-symmetry breaking. Full symmetry for instance would imply that the field 
only depends on the fraction of replicas pointing up: $({U]) = @ ( U [  + . . . + U') .  A 
first stage of hierarchical breaking, on the other hand, would correspond to the ansatz: 
$ ( { U ] )  = $(U'  + ' .  . + U;, . . . ,U'-:+' +.  ' '  + a'). Details on the k + 0 continuation 
as well as on the resulting free energy can be found in [4,5]. Here, we would only like to 
point out that the order parameter q5((0]) can be related to the more standard magnetization 
overlaps by the same kind of argument that leads us to equation (10). Indeed, the fraction 
of vertices with a given value { U ]  for the spins of the k replicas can be easily seen to be 
proportional to $ ( { u ) ) ~ .  The definition of the magnetization overlaps. on the other hand, 
is 

k 

t Note that upper indices label the replicas. They should not be confused with lower indices which label the 2n 
vemices of a graph. 
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stands for the average over the quenched where (A) denotes the thermal average, while 
disorder. It follows by straightforward manipulations that 

Our derivation of equations (16) and (18) is the main result of this paper. Equations (16) 
have been derived previously for spin models on the Bethe lattice [l 11 and were later argued 
to hold for random graphs [4] because such graphs have a tree-like local structure. In 
[4,11], the relation of @ ( [ U ) )  to the overlaps differs, however, from equation (18). It is 
conceivable that this difference can be traced to the effect of finite loops that are ignored in 
these references. In any case, besides being exact, OUT novel derivation elucidates the role 
of the natural order parameter @ ( [ U ) )  in such models. As we have shown, it is the field 
generating the diagrammatic expansion and whose mean-field equations yield the instanton 
that governs the behaviour of this expansion at large orders. 

The above analysis can be extended easily to several different contexts. Together with 
the constraint Q' = 0 V a, equations (16) are, for instance, the mean-field equations for the 
graph bipartitioning problem [3,6]. Fluctuating connectivity can also be accommodated if 
we trade the monomial interaction with a more general potential V(h@)/hz. The saddle 
point equations then read 

where V' denotes the derivative of V. Note that the h-integration now fixes the difference 
of the numbers of edges and vertices. Other constraints can be imposed by extra contour 
integrations. Equations (19) with an exponential potential V = eu($-')/a have also been 
obtained by De Dominicis and Mottishaw [5 ]  in the case of an ensemble of graphs where 
the connectivity is a random variable with Poissonian distribution of average a. Finally, as 
it should be evident, Potts or continuous spins can be introduced by letting the argument of 
the field q5 live on the corresponding space. 

In the special case of fixed ferromagnetic or antiferromagnetic coupling J ,  the mean- 
field equations (16) with M = 3 admit an obvious set of (factorized) solutions 

$ ( { U } )  = 2'43<,, . . .& (20) 

where each factor on the right-hand side stands for (any) solution of the k = 1 (annealed) 
problem. When the - saddle point (20) dominates, both the overlaps and the leading 
exponential piece of factorize, so that despite the average over graphs, the replicas 
are completely decorrelatedt. Continuing k + 0, one finds a quenched free energy equal 
to the annealed energy (1 1) up to finite-size corrections$. The corresponding entropy per 
spin is 

t Dey"?eate$ groups 0; replicas would correspond more generally to a product solution &(m)) = 
2'-m$(k,) . , .&km) where @&) is any solution of the saddle-point equarians with k, replicas and k, = k. 
Such solutions break the symmetry of replicas and are never dominant for integer k.  

It can be verified more generally under the assumption of replica symmetry that the factorized solution (20) is 
indeed dominant in the k + 0 limit. 
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It becomes negative below g N 0.211, signalling the existence of a phase transition in 
the low-temperature antiferromagnetic region. This is also confirmed by an analysis of the 
moments of the partition function. By completely solving equations (16) (M = 3) 
for k = 2, 3 and 4, we have found transition points g;’) 1 0.172, gL3) N_ 0.187 and 
gL4) N 0.205, below which the factorizable saddle point (20) ceases to dominate, so that 
limn+m &log Zd # limn-,w log%, This situation is reminiscent of the random-energy 
model [ 121, except that the critical temperatures seem toaecumulate to a finite value (g c I). 
The nature of this low-temperature phase deserves some further study. Indeed, although 
the couplings are purely antiferromagnetic, there is both frustration and disorder since the 
random graph has loops of arbitrary size. 

We conclude with some comments on the interpretation of random graphs as infinite- 
genus triangulations. This comes about by considering the real field # as an N x N Hermitian 
matrix with N = 1, so that our ensemble consists of ‘fat’ graphs G,, or dual triangulations 
G; [SI weighted equally for all genera. The average Euler characteristic can be computed 
easily by taking a derivative with respect to the size N of the Hermitian matrix with the 
result 

- 
ur 

Note that since for vacuum 4’ graphs with 2n vertices, x = -n + # faces: an average 
graph in this ensemble has a maximal density of handles. Though rather singular, this ZD 
surface interpretation allows a mapping of the Ising model on &, onto a model with spins 
lying on the vertices of the dual triangular net Gz. This duality is implemented by a linear 
transformation of the fields that diagonalizes the quadratic part of the action. For k = 1, 
for instance, the action would take the form 

2 3  r3 -9 1 -2 s = ,U+ + 11) - - -#+ -$+#- 

with 

- g + l  
g - 1 ’  

g=- 

Since the propagator is now diagonal, we can assign a sign 2~ to each edge of the J3 graph, 
or equivalently to the dual edge (ij) on the triangular lattice G;. We interpret this sign 
as the value of ujuj where the U’S  now stand for the spins residing on the vertices of the 
triangular lattice. The product of three signs around a triangle should be +, consistent with 
the fact that only two kinds of vertices survive in the action (23). Furthermore, there is 
an extra weight 2 when all three spins around the triangle are aligned. As can be easily 
verified, the duality transformation (24) maps the high- and low-temperature ferromagnetic 
regions of the king models on Gn and G; to one another. The fact that mean-field theory is 
exact can be understood in the dual language as a consequence of the fact that the number 
of vertices grows only logarithmically with n while the connectivity is extensive. Note, 
finally, that the antiferromagnetic region on G; corresponds to E [O. 1) and is mapped 
onto the interval (-CO, -11. The analysis of the moments and entropy shows no signal for 
a phase transition in this region. 
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